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Predicting Elastic Moduli of Heterogeneous Polymer 
Compositions 

A. Y. CORAN and R. PATEL, Rubber Chemicals Research Laboratories, 
Monsanto Industrial Chemicals Company, Akron, Ohio 44313 

Synopsis 

A new method for predicting elastic moduli M of heterogeneous polymer compositions is proposed. 
I t  is based on a phenomenological adjustment between parallel and series models for upper and lower 
bound moduli M u  and ML. Thus, 

where 6~ is the volume fraction of hard phase, 6s is the volume fraction of soft phase, and n is the 
only adjustable parameter since the upper and lower bound moduli are given by 

M u  = ~ H M H  + 6 s M s  

and 

where M H  and M s  are the moduli of the pure hard and soft phases, respectively. Predicted values 
of M are in agreement with measured values in a number of systems which include polyblends and 
composite materials of fixed morphology. The significance of n is discussed relative to concentrations 
in the area of a phase transition for the polyblends or relative to phase morphology in the case of 
fixed morphology compositions. Interestingly, the relationship, by analogy, is in agreement with 
measured values of polyblend melt viscosities. 

INTRODUCTION 

Many methods for predicting elastic properties of heterogeneous materials 
have been used. They have been applied to such systems as filled resins, filled 
rubbers, fiber-reinforced resins, block polymers, polyblends, and interpenetrating 
or interstitially polymerized network structures. Earlier methods were based 
on a modulus-viscosity analogy using Einstein's relation for the viscosity1 of a 
suspension of rigid spheres in a fluid. Examples of this are found in work by 
Smallwood,2 Guth? and M ~ o n e y . ~  The last of these introduced a crowding factor 
to account for the effects of packing. Later, Kerner5 devised a theory based on 
the effect of hydrostatic stresses on a single spherical particle imbedded and well 
bonded to its matrix. Hashin and Shtrikman6 have also proposed relationships 
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based on spherical particulate geometry. In the Kerner-type formulations, the 
imbedded spheres are no longer rigid; they have finite elastic properties and can 
even be softer than the matrix. Kerner's equations were recast as the Halpin- 
Tsai7 equations which accommodated nonspherical particulate geometry. Lewis 
and Nielsen8 then applied a packing or crowding factor similar to that of Mooney 
to the Halpin-Tsai equations. 

The above models all assume that a discrete particulate phase is dispersed in 
a continuous matrix phase. If phase geometry is not known, the Kerner equa- 
tions and their like can be used to predict upper and lower limits by assuming 
the hard phase continuous or the soft phase continuous. Upper and lower limits 
calculated in this way, for a given composition containing hard and soft phases, 
are somewhat closer together than calculations of the elementary series and 
parallel models. 

More recently, Daviesg has proposed a new relationship which is thought to 
be suited for systems in which both phases are continuous a t  all concentrations 
of hard or soft phase. This relationship states volume additivity of shear moduli 
raised to the 1/5 power. The relationship is simple and describes well the relation 
between composition and modulus in some instances.1° However, i t  is limited 
again to specific phase geometry. 

A more general approach has been taken by Takayanagi et al." It was as- 
sumed that a two-phase material can be treated as a mixture of series and parallel 
elements. Two models were used. Each model was treated in two dimensions. 
Rectangular areas were taken as a volume. Generally, for each composition, 
fitting parameters relating to model geometry are evaluated. These parameters 
then vary with hard/soft composition. Thus, the value of this approach for 
predicting the properties of various compositions is doubtful. 

As Nielsen has pointed out, in systems of block polymers and polyblends, the 
phase morphology changes with composition.12 In these cases, such parameters 
as packing factors and various methods of handling domain-domain interactions 
lose meaning. Continuous materials containing no voids can be made a t  any 
ratio of hard phase to soft phase. Both phases of such compositions are fre- 
quently in the liquid state during preparation. Morphologic accommodation 
is then completely facilitated. 

In this report, an approach to predicting moduli of compositions of systems 
wherein the phase morphology is a function of hard or soft volume fraction is 
described. The approach is merely a phenomenological adjustment between 
the parallel and series models for upper and lower limits of modulus. The 
treatment was developed for rubberhesin polyblends but is applicable to most 
other types of systems. 

THEORY 

When two polymers are mixed in the melt and then cooled, the resulting 
composition generally comprises two phases. One phase largely consists of one 
polymer; the other phase largely consists of the other polymer. If the elastic 
moduli of the two polymers differ, the phase morphology can be such that the 
hard phase can be continuous, the soft phase can be continuous, or both phases 
can be continuous. Now it is agreed that the modulus (either Young's or shear) 
of the mixture must be between the parallel model upper bound, M I ] ,  and the 
series model lower bound, ML, given by the equations 
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( C )  
Fig. 1. Cross sections of idealized compositions: (a) @H = 0.25; (b) @,H = 0.5; (c) @ H  = 0.75. Dark 

area represents hard phase. 

MU = ~ H M H  + 4sMs 

ML = ( @ H / M H  + ds/Ms)-' (2) 
where M H  and M s  are the moduli of the pure hard and soft phases, and 4~ and 
4s are the volume fractions of the hard and soft phases, respectively. The 
modulus M of the two-phase composition or composite can then be written 

(3) 

(1) 
and 

M = f ( M u  - ML ) + ML 
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Fig. 2. Parameter f as a function of n and volume fraction of hard component. 

where the parameter f can vary between zero and unity. The value off would 
be a function of phase morphology. If only the soft phase were continuous, f 
would be low; if only the hard phase were continuous, f would be closer to unity. 
Likewise, the case of interpenetrating phases, wherein both phases are contin- 
uous, would be characterized by intermediate values off .  

The phase morphology of mixtures frequently varies with 4~ or 4s. This is 
especially true when compositions are prepared by mixing the two polymers at  
such a temperature that both are molten. A common type of change in phase 
morphology with 4~ is illustrated by the idealization of Figure 1. Here mono- 
dispersed cubic particles of hard material are randomly placed in a cubic lattice 
of a soft matrix. In Figure la,  4~ is 0.25; the soft phase is essentially continuous 
and the hard phase is dispersed. The series model M L  is favored, and f has a 
low value. In Figure lb ,  both phases are largely continuous; f may be near 0.5, 
and M may be near the arithmetic mean of MU and ML. Similarly, in Figure 
lc,  4~ is 0.75, and the soft phase is essentially dispersed in the continuous hard 
phase. Thus, the parallel model MU is approached, and f is near unity. 

In the case of Figure 1, f is clearly a function of 4~ or 4s. The value off will 
most rapidly change with 4~ where 4~ is 0.5, which corresponds to a phase 
transition or inversion. This can be approximated by 

which integrates to 

f = 34H2 - 2 4 H 3  

since 4s is 1 - +H. A more general case, wherein the transition can occur other 
than where C$H = 0.5, is 

(6) 

If n is 2.00, the case of eq. (5) is realized. Figure 2 illustrates how f can vary with 
4~ and n. 

f = dH"(n4S + 1) 

Combining eq. (6) with eq. (3), we now write 
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Fig. 3. Relative shear modulus of EPDM/polypropylene polyblends. Circles are experimental 
observations: solid line is calculated. 

I 300 

Fig. 4. Relative Young’s modulus of ABS compositions. Circles are experimental observations; 
solid line is calculated. 

M = $Hn(n$s + 1 ) W u  - M L )  + M L  (7) 
When M lies between ML and Mu,  it is expressed as a function of only one fitting 
parameter, n. The parameter n, then, must contain aspects of dispersed par- 
ticulate shape, wetting, molecular interpenetrability, thermodynamic compa- 
tibility, interdomain interference, etc. 

Certain statements about the nature or significance of the parameter n can 
be made from inspection of the equations. In the case of aligned continuous fiber 
morphology, the longitudinal Young’s modulus would be characterized by a value 
of zero for n. Equation (7) then reduces to M u  or the volume rule of mixtures. 
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Fig. 5. Relative Young's modulus of polystyrenehbber blends and triblock copolymers. Circles 
are experimental observations; solid lines are calculated. 

Transverse Young's modulus for aligned laminated plate morphology would be 
characterized by an infinite value for n. Since the change in f i n  respect to 4~ 
is greatest when 4~ is (n  - l)/n, (n  - l)/n would be related to a packing volume 
( d m )  of the type used by Lewis and Nielsen. This, of course, could only apply 
to systems of fixed phase morphology in which nonmelting hard particles of fixed 
shape are dispersed in a continuous soft phase. In the case of melt-mixed po- 
lyblends and block polymers in which phase morphology depends on 4~ or $s, 
the composition where 4~ is equal to ( n  - l ) /n  could be viewed as a point of 
transition or phase inversion. 

In addition to predicting moduli, the method of eq. (7) might be used to predict 
viscosities of mixtures of molten polymer phases. By analogy,2 then, eq. (7) 
would be written 

(8) 

where 4,, = the volume fraction of the more viscous phase, 4fl = the volume 
fraction of the more fluid phase, vu = &.r lu + 4fmfi, w, = ( 4 u / v u  + 4fdvfi)-', v u  

= viscosity of the more viscous phase, and qyl = the viscosity of the more fluid 
phase. 

17 = 4 U % 4 f L  + 1)(17u - 17L) + 17L 

APPLICATION OF THE THEORY 

Examples taken from elsewhere will be used to demonstrate the application 
of the theory to experimental results. Figure 3 is an example of a polyblend 
system.13 Polypropylene was melt blended with EPDM rubber. Shear moduli 
of compression-molded sheets were determined at  25°C using a torsion pendu- 
lum. A value of 2.0 was selected for n to give the best fit of the data. This would 
indicate that, as 4~ is increased, a transition or inversion occurs near where 4~ 
is 0.5. In this case, the maximum change in f in respect to $H,  at 4~ = 0.5, is 
likely due to a rapidly changing phase morphology with changes in 4 ~ .  The 
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'0 0.2 0.4 0.6 0.8 1.0 
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Fig. 6. Relative shear modulus of nylon 6/polyether block polymers. Circles are experimental 
observations; solid line is calculated. 

situation could be similar to the idealization of Figure 1. At any rate, the theory 
fits the data reasonably well. 

An example of an acrylonitrile-butadiene-styrene (ABS) polymer system 
reported by Uemura and Takayanagi14 is illustrated by Figure 4. Here, the 
dynamic Young's modulus is plotted against the volume fraction of the hard 
acrylonitrile-styrene (An-St) polymer. A value of 2.5 was selected for n to give 
the best fit of the data. Again, eq. (7) fits the data reasonably well. Since 
morphology can vary with @ H ,  the significance of the hard phase concentration, 
4~ = 0.60, corresponding to the maximum rate of change in f with 4~ is not 
known. 

Figure 5 shows a contrast between a block copolymer system and a blend 
system. In both cases, the hard polymer is polystyrene, and the soft phases are 
similar, styrene-butadiene rubber (SBR) in the blend and polybutadiene in the 
block copolymer. The data relating to the blends are due to Kraus,15 and the 
data relating to block polymers are in respect to a series of styrene-butadiene- 
styrene (SBS) triblock polymers reported by Holden et a1.I6 and discussed by 
Nielsen.12 A value of 2.95 was required to fi t  the case of blends, while a value 
of 4.5 was appropriate for the copolymer case. This would correspond to value 
of 4~ in the region of transition of 0.66 for the blend, but 0.78 for the copolymer. 
It is thus apparent that the changes in morphology with 4~ are quite different 
for the copolymers than for the blends. Possible morphologies of these two 
systems have been discussed by Nielsen.12 Importantly, again the data are 
consistent with eq. (7). 

A series of nylon 6/polyether block polymers is treated in Figure 6.17 The 
values were measured at  -1OOC. As in the case of the SBS copolymers, n is a 
high value; in this case, it is 5.1. Though the segments of the SBS and the nylon 
6/polyether system are vastly different, it is indicated that morphology changes 
with 6~ in each case in a similar fashion. It remains to be demonstrated, how- 
ever, that all block polymers give high values of n. 
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% 
Fig. 7. Relative shear modulus of composites formed by interstitial polymerization of PAN/ure- 

Another type of system which has given high values of n is illustrated by Figure 
7. These data relate to composites formed by interstitial polymerization of vinyl 
monomers in polyurethane elastomers reported by Allen et al.1° Here, the in- 
gredients for forming urethane elastomer networks are mixed with either methyl 
methacrylate or acrylonitrile. The urethane network forms, and then the vinyl 
monomer polymerizes. Both the poly(methy1 methacrylate) (PMMA) and the 
polyacrylonitrile (PAN) systems give higher values of n, similar to those obtained 
for the block polymers. Morphologic studies indicated that the composites 
consisted of roughly spherical hard domains in a continuous elastomer matrix. 
However, it was further indicated that interactions as interconnections between 
the hard domains did, in fact, exist. It should be noted also that the Daviesg 
equation which assumes interpenetrating phases fits the modulus-composition 
data fairly well. The rather large value of n needed to fit data relating to both 
the interstitial composites of Allen et al. and the block copolymer data as well 
may be related to a wide range of 4~ over which the phases are each intercon- 
nected. 

The ability of eq. (8) to predict the viscosities of molten compositions is 
demonstrated by the plotted values in Figure 8. The data relate to melted blends 
of polyethylene and the more viscous polybutene-1 studied by Uemura and 
Takayanagi.14 Again, the agreement between observed and calculated values 
is good. The value of n selected to fit the data was 3.0. This is similar to the 
values of n used to fit modulus data in the polyblends considered above. 

In addition to the above systems which can be of variable morphology, systems 
of fixed morphology were studied. Composites of fixed morphology are those 
in which only one of the phases can flow during preparation of fabrication. 
Systems of fixed morphology include resin/fiber composites, glass beadhesin 
composites, ribbonhesin composites, graphite flakehesin composites, and the 
like. 

thane and PMMA/urethane. Circles are experimental observations; solid lines are calculated. 
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Fig. 8. Relative viscosity of molten polyblends of polyethylene and polybutene-1. The polybu- 
is the volume fraction of polybutene-1. Circles are ex- tene-1 phase is the more viscous, hence 

perimental observations; solid line is calculated. 

p/H 
Fig. 9. Relative shear modulus of glass bead/epoxy resin composites. Circles are experimental 

observations: solid lines are calculated. 

The case of glass beads in epoxy resin is given by Figure 9. These data were 
taken from Lewis and Nielsen.8 Here, a value of 2.5 for n was required. This 
corresponds to a value of 0.60 for C ~ H  where f increases most rapidly with 4 ~ .  
This is not far from the value of & (0.64), the maximum packing fraction used 
by Lewis and Nielsen to fit their data to the modified Halpin-Tsai equation. 

Figure 10 contains data of Hirai and Klein.18 It relates to graphite flake-epoxy 
resin composites. Here, a value of 0.75 was required for n. This would indicate 
a large interaction or connectivity between the flakes. The parallel model MLJ 
is somewhat favored. The data of Figure 11 relate to aligned continuous carbon 
fiberlepoxy resin composites. The work was reported by Adams and Bacon.lg 
For Young’s modulus, a value of 0.6 was used for n. This again indicates a 
preference for the parallel model MU. It  would have been expected that n ap- 
proach zero in this case, since the specimens were carefully prepared and the 
volume rule of mixtures should have been realized. These authors discuss to 
some extent the deviation of their data from the volume rule of mixtures. 

Figure 11 also contains Adams and Bacon’s data for shear moduli of the aligned 
carbon fiber composites. In this case, a value of 4.7 was required for n. In the 
case of the longitudinal shear modulus of aligned composites, as opposed to the 
case of longitudinal Young’s moduli, a packing effect should be meaningful. The 
value of 4.7 for n gives a value of 0.79 for 4~ where f changes most rapidly with 
4 ~ .  The value 0.79 is of the magnitude expected for the close packing of rods. 
I t  should be noted that Adams and Bacon reported results relating to several 
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Fig. 10. Relative modulus of graphite flake/epoxy resin composites. Circles are experimental 
observations; solid line is calculated. 

N - 
W 

0 0.2 0.4 0.6 0.0 1.0 

Fig. 11. Moduli of graphite fibedepoxy resin composites. Circles are experimental observations; 
solid lines are calculated. 

series of carbon fiber composites. Average values corresponding to each level 
of $ H  were used in Figure 11. 

The application of the theory to experimental data is summarized in Table 
I. The agreement between observed properties ( P )  and calculated properties 
(Pcalc) is indicated by the coefficients of variations (S,). These are standard 
errors of estimating properties expressed as fractions of the calculated values. 
Thus, 

where N is the number of data points excluding, of course, the points corre- 
sponding to properties of pure components, which can be determined only ex- 
perimentally. The number of degrees of freedom for error, values of which also 
are in Table I, is N - 1. 

The coefficient of variation is 21% overall, with 54 degrees of freedom for error. 
This indicates good agreement since the range of data points is about 2% decades 
on the average. In addition, Table I indicates the possibility of broad application 
of the theory since values of shear modulus, Young's modulus, and viscosity were 
predicted for a wide variety of systems. It should be noted here that essentially 
all the data analyzed prior to this writing were used. Considering the simplistic 
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nature of the theoretical approach, the breadth and quality of agreement are 
remarkable, if not fortuitous. 

It is interesting that both systems of variable and fixed morphology are de- 
scribed by eqs. (7) and (8). However, the interpretations of the significance of 
the parameter n are different in the variable and fixed systems. In systems of 
variable morphology, (n  - l)/n probably indicates the approximate center of 
a range of concentrations $H wherein a transition or inversion occurs. It is in- 
teresting that in the polyblends, n is 2 to 3 corresponding to transition or inver- 
sion concentrations for $H of 0.5 to 0.67. However, in copolymer heterophase 
systems, the transition or inversion occurs near where $H is about 0.8. Com- 
posites formed by interstitial polymerizations give transitions at  about the same 
values of $H as for the copolymers. 

As stated before, (n - l)/n in systems of fixed morphology can correspond to 
a packing volume. However, when n is near 1.0 or less, this interpretation be- 
comes meaningless. This occurs as the parallel model is approached. In the 
case of aligned fiber composites, ideally, the volume rule of mixtures is achieved 
in respect to longitudinal Young’s modulus. In such cases, indeed, the concept 
of packing volume loses relevance since hard domains essentially do not move 
in respect to one another during deformation. 

I t  should be noted that the type of morphology cannot be determined from 
n. Different types of systems can give the same value of n for different reasons. 
On the other hand, if the morphology is fixed and known, it is possible that n 
could be estimated from the packing fraction. 

Regardless of the interpretation of the significance of n, in principle, only one 
mixed composition must be tested for its determination. If the properties of 
the pure components and one mixture are known, then properties of other 
mixtures can be estimated by the present method. 
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